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Abstract

The multifractal formalism for chirps is a formula conjectured by Jaffard. It describes the

statistics of both the Hölder exponents H and the (chirp) oscillation exponents b
characterizing the singular behavior involved in a given singular function. In that formula,

the ‘‘chirp-type’’ Hölder spectrum dðH; bÞ is related to oscillation spaces Os;s0

p ðRmÞ: For either
sX0 or sp� m=p; these spaces are a variation on the definition of Besov (or Sobolev) spaces.

On the contrary the spaces Os;s0

p ðRmÞ for �m=poso0 cannot be sharply imbedded between
Sobolev spaces, and thus are new spaces of really different nature. We prove that the

multifractal formalism for chirps yields for any function an upper bound. Besides, this upper

bound is optimal.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let us recall the definitions of Hölder regularity and Hölder spectrum. Let F :
Rm/R be a function.

Definition 1.

* FAChðx0Þ for h40 if there exist a polynomial P of degree smaller than h and a
constant C such that, in a neighborhood of x0

jFðxÞ � Pðx � x0ÞjpCjx � x0jh: ð1Þ
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* The Hölder exponent hF ðx0Þ of F at x0 is the supremum of all values of h such

that FAChðx0Þ:
* The Hölder spectrum of F is the function dðHÞ which associates to each positive

H the Hausdorff dimension of the set EðHÞ of points x where hF ðxÞ ¼ H (by

convention dimð|Þ ¼ �N).
* FAChðRmÞ for h40 if (1) holds for any x and x0 in R

m with a uniform constant C:
* The global Hölder regularity of F is the supremum of all values of h such that

FAChðRmÞ:

The (standard) multifractal formalism was introduced by Frisch and Parisi [10] in
the context of fully developed turbulence. It proposes to compute the Hölder
spectrum of a function F using the formula

dðHÞ ¼ inf
p40

ðpH � ZðpÞ þ mÞ; ð2Þ

where ZðpÞ is defined by
R
Rm jFðx þ lÞ � FðxÞjp dxBjljZðpÞ when l/0: Note that the

study of this Legendre transform was already advocated in the seminal paper of
Mandelbrot [18]. An alternative formula based on the local maxima of the wavelet
transform was proposed by Arneodo, Bacry, and Muzy (see [1]). Jaffard [12], proved
that formula (2) and the wavelet-based formula yield the same exponent ZðpÞ which
can be deduced from the functional Besov-type spaces to which the function F

belongs, i.e.,

ZðpÞ ¼ supfs: FABs=p;N
p ðRmÞg: ð3Þ

The definition of a Besov space will be recalled in (9).
The validity of (2) has been proved for a large class of selfsimilar functions (see

[2,4–9,12]). Jaffard [14], proved that (2) holds for quasi-all functions, i.e., outside a
set of the first class of Baire.
In [16], a counter-example shows that the (standard) multifractal formalism fails in

the case where the function displays very oscillating behaviors. The Hölder exponent
is not precise enough, in the sense that it does not take into account the local
oscillations of the function. Indeed a given Hölder exponent H at x0 allows for

different behaviors near x0: for instance cusp-like singularities, such as jx � x0jH or
very oscillatory behaviors, such as

FH;bðxÞ ¼ jx � x0jHsin
1

jx � x0jb

 !
ð4Þ

for b40: The functions FH;b are the most simple examples of chirps at x0: In signal

analysis, this notion is expected to give a model for functions whose ‘‘instantaneous
frequency’’ increases fast at some time (see [17]).
A careful study of the (standard) multifractal formalism shows that this formalism

is only adapted to ‘‘cusp-type’’ singularities (i.e., singularities with oscillation
exponent b ¼ 0). Contrary to functions with cusp singularities, the primitive of the
oscillating function (4) has an Hölder exponent H þ 1þ b at x0 which is different
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from H þ 1 (the gain of regularity is not 1 as might be expected but bþ 1). This
remark motivated the following definition introduced by Meyer [17].

Definition 2. Let hX0 and b40: A function F in LNðRmÞ is a ðh; bÞ-type chirp at x0
if 8nAN; F can be written as a finite sum of partial derivatives of order n of functions

which belong to Chþnð1þbÞðx0Þ:

The interior of the set of points ðh; bÞ such that a function F is a ðh; bÞ-type chirp
at x0 is always a domain of the form hohF ðx0Þ; bobðx0Þ (see [16]). The non-negative
real number bðx0Þ is called the chirp exponent at x0; i.e.,

bðx0Þ ¼ supfb; (hohF ðx0Þ such that F is a ðh; bÞ-type chirp at x0g: ð5Þ

If we want to study chirps located in a signal, we are naturally led to define a
spectrum of ‘‘chirp-type’’ Hölder singularities as follows.

Definition 3. The spectrum dðH; bÞ of chirp-type Hölder singularities of a function F

is the Hausdorff dimension of the set EðH;bÞ of points where F has chirp exponents
ðH; bÞ:

Jaffard conjectured by thermodynamic arguments a new multifractal formalism

adapted to chirps. He proposed the use of oscillation spaces Os;s0

p ðRmÞ (see Definition
4) in order to capture the oscillating behaviors which are left undetected by Sobolev
or Besov spaces.
Let

zðp; s0Þ ¼ supfs;FAOs=p;s0=p
p ðRmÞg: ð6Þ

The formula of Jaffard asserts that

dðH; bÞ ¼ inf
s0;p

ðHp � ð1þ bÞs0 � zðp; s0ÞÞ: ð7Þ

It is called the multifractal formalism for chirps (or for chirp-type Hölder
singularities). Jaffard checked its validity for lacunary wavelet series (for which
the standard multifractal formalism was wrong). Arneodo et al. [3] constructed a
family of wavelet series for which (7) holds.
In the next section, we recall both the wavelet characterization of Besov spaces,

oscillation spaces and chirps. We also give the heuristic argument from which
formula (7) was derived.
In the third section, we recall the embeddings between oscillation and Besov

spaces.
In the fourth section, we will demonstrate the upper bound for the new formalism.
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2. The heuristic derivation of the multifractal formalism for chirps

Suppose that the function F : Rm-R is known by the explicit knowledge of its

coefficients in a given basis (see [20]). Let cðiÞ; i ¼ 1;y; 2m � 1; be a family of
2m � 1 smooth wavelets such that the 2mj=2cðiÞð2jx � kÞ; i ¼ 1;y; 2m �
1; jAZ; kAZm; form an orthonormal basis of L2ðRmÞ: We will use a LN

normalization for wavelets, so that we write

FðxÞ ¼
X
i;j;k

C
ðiÞ
j;kc

ðiÞð2jx � kÞ; ð8Þ

where C
ðiÞ
j;k ¼ 2mj

R
Rm FðxÞcðiÞð2jx � kÞ dx: We will from now on use the following

simpler notations; l and l0 will denote, respectively, the cubes lj;k ¼ k2�j þ ½0; 2�j�m

and lj0;k0 ¼ k02�j0 þ ½0; 2�j0 �m; Cl will denote the coefficient C
ðiÞ
j;k; and cl will denote

the wavelet cðiÞð2jx � kÞ (note that we ‘‘forget’’ to write the index i of the wavelet,
which is of no consequence). Recall that F belongs to the Besov space Bs;q

p ðRmÞ with
p40 and q40 if (see [20])

2sj2�mj=p
X

k

jCljp
 !1=p

:¼ ej with ejAlq: ð9Þ

The spaces Os;s0

p ðRmÞ are function spaces that have been introduced by Jaffard [13] in
order to quantify with one parameter (or a few) the degree of correlations between
positions of large wavelet coefficients.

Definition 4. Let p40; and s; s0AR:

A function F belongs to the oscillation space Os;s0

p ðRmÞ if its wavelet coefficients
satisfy

(C40 8jX0 2sj
X

k

sup
l0Cl

jCl02
s0j0 jp

 !1=p

pC: ð10Þ

Note that, if p ¼ N; this condition becomes

(C40 8jX0 2sj sup
j0Xj

jCl02
s0j0 jpC:

The left-hand side defines the Os;s0

p ðRmÞ semi-norm.
Jaffard and Meyer [17, Theorem 4.2], characterized chirps in terms of estimates on

the size of the wavelet coefficients.
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Proposition 1. F is a ðh; bÞ-type chirp at x0 with global Hölder regularity r40 if and

only if for any NX0

* if jk2�j � x0jp2�j then jCljpCN2
�Nj

* if jk2�j � x0j1þbp2�jpjk2�j � x0j then jCljpCN jk2�j � x0jhðjk2
�j�x0j1þb

2�j ÞN

* if jk2�j � x0j1þb
X2�j then jCljpCjk2�j � x0jhð 2�j

jk2�j�x0j1þbÞr:

It follows that if F is a ðh; bÞ-type chirp at x0; its wavelet coefficients are of the

order of magnitude of jk2�j � x0jh near the curve jk2�j � x0j1þbB2�j and decay fast
away from this curve.
Let us recall the heuristic argument from which formula (7) was derived. Though

this argument cannot be transformed into a correct mathematical proof, it shows at
least why that formula can be expected to hold. We estimate for each ðH; bÞ the
contribution of the chirps of exponents ðH; bÞ to the quantityX

k

sup
l0Cl

jCl0 jp2s0j0 : ð11Þ

Consider a cube l of size 2�j which contains a chirp of exponents ðH; bÞ at x0: Then

the coefficients jCl0 j are of the order of magnitude of jk02�j0 � x0jH near the curve
jk02�j0 � x0j1þbB2�j0 and decay fast away from this curve. Let l0Cl: Since x0Al then
jk02�j0 � x0jp2�j; so jk02�j0 � x0j1þbp2�jð1þbÞ: It follows that the wavelet coefficients

Cl0 for l
0Cl are negligible as long as 2�j042�jð1þbÞ; i.e., as long as j0ojð1þ bÞ:When

j0Bjð1þ bÞ; for some values of k0;

jCl0 jBjk02�j0 � x0jH and jk02�j0 � x0j1þbB2�j0 :

So

jCl0 jB2
�j0

H
1þbBð2�jÞH :

So that

sup
l0Cl

jCl0 jp2s0j0B2
�j0ð Hp
1þb�s0Þ

B2�jðHp�ð1þbÞs0Þ

(as long as s0ppH=ð1þ bÞ; else the supremum is infinite). The contribution of the
chirps of exponents ðH; bÞ to quantity (11) is thus

2jdðH;bÞ2�jðHp�ð1þbÞs0Þ ¼ 2�jðHp�ð1þbÞs0�dðH;bÞÞ;

where dðH; bÞ was given in Definition 3. When j/N; the main contribution is
obtained by the couple ðH; bÞ realizing the infimum of Hp � ð1þ bÞs0 � dðH; bÞ;
hence the heuristic formula

zðp; s0Þ ¼ inf
H;b

ðHp � ð1þ bÞs0 � dðH; bÞÞ: ð12Þ
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This formula is not the one we are looking for since we know zðp; s0Þ and we look for
dðH; bÞ; but if (12) holds and dðH; bÞ is convex, dðH; bÞ is recovered by an inverse
Legendre transform formula which yields (7).

3. Embeddings between oscillation and Besov spaces

Jaffard [13,15] proved that the spaces Os;s0

p ðRmÞ for either sX0 or sp� m=p are a

variation on the definition of Besov (or Sobolev) spaces. On the contrary the spaces

Os;s0

p ðRmÞ for �m=poso0 cannot be sharply imbedded between Sobolev spaces, and
thus are new spaces of really different nature. Using the convention Cs0 ðRmÞ ¼
Bs0;N
N

ðRmÞ even when s0 is an integer, i.e., FACs0 ðRmÞ if and only if its wavelet
coefficients satisfy the condition

jCljpC2�s0j; ð13Þ
Jaffard proved the following results.

Proposition 2.

8eX0; 8e0X0; Osþe;s0þe0
p ðRmÞCOs;s0

p ðRmÞ; ð14Þ

8e40; Os�e;s0þe
p ðRmÞ+Os;s0

p ðRmÞ: ð15Þ

1. If s40; then Os;s0

p ðRmÞ ¼ B
sþs0þm=p;N
p ðRmÞ:

2. B
s0þm=p;p
p ðRmÞ+O0;s

0

p ðRmÞ+B
s0þm=p;N
p ðRmÞ:

3. If �m=poso0; then

Bs0þm=p;p
p ðRmÞ+Os;s0

p ðRmÞ+Cs0 ðRmÞ

and

Csþs0þm=pðRmÞ+Os;s0

p ðRmÞ+Bsþs0þm=p;N
p ðRmÞ

4. If sp� m=p then Os;s0

p ðRmÞ ¼ Cs0 ðRmÞ:

Furthermore, in Cases 2 and 3, the embeddings are optimal.

Such embeddings were given for a definition of the oscillation spaces which differs
slightly from the one we choose here. So we prefer here to rewrite the proof of these
embeddings. However, we refer to [15] for the proof of the optimality of the
embeddings.
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The first point of Proposition 2 is straightforward. The second point follows from

the fact that if j0Xj then for any positive e; 2ðj
0�jÞe

X1 so that

8j 2sjp
X

k

sup
l0Cl

jCl0 j
p2s0j0pp2ðs�eÞjp

X
k

sup
l0Cl

jCl0 j
p2ðs

0þeÞj0p:

Now, we prove the embeddings of oscillation spaces into Besov spaces. Since

jClj2js0psupl0CljCl0 j2j0s0 then jCljpsupl0CljCl0 j2ðj
0�jÞs0 : It follows that

8j 2ðsþs0þm=pÞj2�mj=p
X

k

jCljp
 !1=p

p2sj
X

k

sup
l0Cl

jCl0 j
p2j0s0p

 !1=p

;

so that 8s; s0; p; Os;s0

p ðRmÞ+B
sþs0þm=p;N
p ðRmÞ: Furthermore, if (10) holds, applying

this bound for j ¼ 0 yields supl0 jCl02
s0j0 jpC; so that

8s; s0; p; Os;s0

p ðRmÞ+Cs0 ðRmÞ: ð16Þ

In order to prove the converse embeddings, we remark that we can bound

supl0Cl ðjCl0 j2j0s0 Þp either by

X
j0Xj

X
l0Cl

ðjCl0 j2j0s0 Þp ð17Þ

or by

sup
j0Xj

sup
l0

ðjCl0 j2j0s0 Þp ð18Þ

(where supl0 is taken on all dyadic cubes of size 2
�j0 ).

If we use (17) as upper bound, we obtain

2spj
X

k

sup
l0Cl

jCl0 jp2j0s0pp2spj
X

k

X
j0Xj

X
l0Cl

jCl0 jp2j0s0p:

The latest term is equal to

2spj
X
j0Xj

X
k0

jCl0 jp2j0s0p: ð19Þ

* If s ¼ 0; then (19) is equal to
P

j0Xj

P
k0 jCl0 j

p2j0s0p: Applying this bound for j ¼ 0
yields

Bs0þm=p;p
p ðRmÞ+O0;s

0

p ðRmÞ: ð20Þ

* If F belongs to B
sþs0þm=p;N
p ðRmÞ; 2ðsþs0Þpj0

P
k0 jCl0 j

ppC so that, if s40; (19) is

bounded. Thus if s40; B
sþs0þm=p;N
p ðRmÞ+Os;s0

p ðRmÞ:
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* If so0; using (20) and (14), it follows that

Bs0þm=p;p
p ðRmÞ+O0;s

0

p ðRmÞ+Os;s0

p ðRmÞ:

Now if we bound supl0Cl ðjCl0 j2j0s0 Þp by (18), since (18) does not depend on k;

2spj
X

k

X
l0Cl

jCl0 jp2j0s0pp2mj2spj sup
j0Xj

sup
l0

jCl0 jp2j0s0p: ð21Þ

* If sp� m=p and F belongs to Cs0 ðRmÞ; supl0 jCl0 jp2j0s0ppC so that the right-hand

side of (21) is bounded by C2mj2spjpC and Cs0 ðRmÞ+Os;s0

p ðRmÞ:
* If s4� m=p and FACsþs0þm=pðRmÞ; jCl0 jpC2�ðsþs0þm=pÞj0 ; so that the right-hand

side of (21) is bounded by C and Csþs0þm=pðRmÞ+Os;s0

p ðRmÞ:

4. The proof of the upper bound for the multifractal formalism for chirps

Jaffard and Meyer [17, Theorem 4.2], characterized chirps using two-microlocal
spaces; Recall (see [11]) that a distribution F belongs to the two-microlocal space

Ct;t0

x0
if there exists C40 such that the wavelet coefficients of F satisfy, for jx0 � k2�j j

close enough to 0,

jCljpC2�jðtþt0Þð2�j þ jx0 � k2�jjÞ�t0 ; ð22Þ

i.e.,

jCljpC2�jtð1þ j2jx0 � kjÞ�t0 : ð23Þ

Proposition 3. F is a ðh; bÞ-type chirp at x0 with global Hölder regularity r40 if and

only if F belongs to all the two-microlocal spaces Ct;t0
x0

for t þ t0pr and ðbþ 1Þt þ
bt0ph:

Jaffard and Meyer also characterized two-microlocal spaces in terms of local
Hölder type conditions (see [17, Theorem 1.2]). Let Br be the ball jx � x0jpr and Gr

the annulus rpjx � x0jp3r: Let A be a set and sAR: By definition, a function f

belongs to CsðAÞ if it is the restriction to A of a function F in CsðRmÞ: The norm of f

is then the infimum of all possible norms of F in CsðRmÞ:

Proposition 4. If t0 is negative, a distribution f defined in a neighborhood of x0 belongs

to Ct;t0
x0

if and only if there exists C40 such that

jjf jjCtþt0 ðBrÞpCr�t0 : ð24Þ

ARTICLE IN PRESS
M. Ben Slimane / Journal of Approximation Theory 130 (2004) 99–110106



If t0 is positive, f belongs to Ct;t0
x0

if and only if there exists C40 such that

jjf jjCtþt0 ðGrÞpCr�t0 ð25Þ

and

fACtðRmÞ: ð26Þ

In view of (16), in order to prove the upper bound in the multifractal formalism
for chirps, it suffices to show the following result.

Theorem 1. If FAOs;s0

p ðRmÞ with s0 smaller than the global Hölder regularity r of F then

dðH; bÞppðH � ð1þ bÞs0 � sÞ:

Proof. Since FAOs;s0

p ðRmÞ then there exists C40 such that

8j; 2sj
X

k

sup
l0Cl

jCl02
s0j0 jp

 !1=p

pC: ð27Þ

Let d be such that 0odpm and Bd
j;k be the ball centered on k2�j and of size

diamðBd
j;kÞ ¼ j�2=d2sjp=d sup

l0Cl
jCl02

s0j0 jp=d :

Then (27) can be rewritten as

8j;
X

k

ðdiamðBd
j;kÞÞ

dp
c

j2
: ð28Þ

Let Ad
j ¼

S
k Bd

j;k: Relation (28) implies that the d-Hausdorff measure of Ad :¼
lim supAd

j is 0.

Proposition 5. If x0eAd then F belongs to all the two-microlocal spaces Ct;t0

x0
for

t þ t0ps0 and tos þ s0 þ d=p:

Proof. Let x0eAd ; then there exists j0 such that 8jXj0; 8k; x0eBd
j;k so that

8jXj0; 8k; 8l0Cl: jCl0 jp2�s0j02�jsjx0 � k2�jjd=p
j2=p: ð29Þ

If furthermore jx0 � k2�j jpC2�j; then

8l0Cl: jCl0 jpC2�s0j02�jðsþd=pÞj2=p: ð30Þ

Hence, if jx0 � k2�j jpC2�j; then

8l0Cl: jCl0 jpC2�s0j02�jðsþd=p�eÞ 8e40: ð31Þ
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Let now 0oro1=8; there exists a unique jAN
 such that 18 2
�jpro14 2

�j so that

BrC½jx � x0jp14 2�j � and GrC½1
8
2�jpjx � x0jp34 2�j�: There exist at most two cubes

of the form l that cover Br and Gr: Thus, if there exists C40 such that for any j

large enough and for any k such that jx0 � k2�jjpC2�j ; the condition

jjf jjCtþt0 ðlÞpCð2�jÞ�t0 ð32Þ

holds, then relations (24) and (25) hold too. Remark that (32) is equivalent to

8l0Cl: jCl0 jpC2�ðtþt0Þj02jt0 : ð33Þ

Remark also that 2j0a2jbp2j0A2jB for all j large enough and j0Xj if and only if apA

and a þ bpA þ B: It follows from (31) that relations (24) and (25) hold for any t and
t0 satisfying t þ t0ps0 and tos þ s0 þ d=p: To achieve the proof of Proposition 5, we
should verify (26) when t0 is positive. From the convexity of the two-microlocal

domain of F at x0; i.e., fðt; t0Þ; FACt;t0
x0
g; and the embeddings

8d40; Ct;t0

x0
CCt�d;t0þd

x0
ð34Þ

and

8d40; Ct;t0

x0
CCt;t0�d

x0
ð35Þ

it follows that F belongs to all the two-microlocal spaces Ct;t0
x0
for t þ t0ps0 and

tos þ s0 þ d=p if and only if F belongs to all the two-microlocal spaces

C
sþs0þd=p�e;�s�d=pþe
x0 for any e close enough to 0. So, if t0 :¼ �s � d=p þ e is positive
then t :¼ s þ s0 þ d=p � e ¼ s0 � t0ps0: So in view of (16), we obtain FACtðRmÞ:
Let us now achieve the proof of Theorem 1. Let e040; we will show that if x0eAd

and

d ¼ pðH � ð1þ bÞs0 � sÞ ð36Þ

then x0eEðH�e0;bÞ: Let e40 and ðT ;T 0Þ ¼ ðs þ s0 þ d=p � e=2;�s � d=pÞ: Since
Tos þ s0 þ d=p and T þ T 0ps0 then FACT ;T 0

x0
: Remark now that since s0pr then

T þ T 0pr:Nevertheless, (36) implies that ðbþ 1ÞT þ bT 0 ¼ H � ðbþ 1Þe=2 which is
larger thanH � e0 for eo2e0=ðbþ 1Þ:Hence x0eEðH�e0;bÞ: As a consequence, we have

8e040; EðH�e0;bÞCAd :

Thus

8e040; dðH � e0; bÞppðH � ð1þ bÞs0 � sÞ:

Therefore

8e040; dðH; bÞppððH þ e0Þ � ð1þ bÞs0 � sÞ:
This yields Theorem 1.

The upper bound in (7) is optimal since it becomes an equality in the case of
lacunary wavelet series (see [13]). Besides Arneodo et al. [3] constructed an other
family of wavelet series for which (7) holds.
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Remark. There is a slightly different definition of oscillation exponent b which
agrees with the definition of the chirp oscillation exponent for functions such as (4),
and which is stable under the addition of a ‘smooth noise’. Let htðx0Þ denote the
Hölder exponent of the fractional primitive of order t at x0 of a function F : More
precisely, if F is locally bounded, we denote by htðx0Þ the Hölder exponent of the
function Ft :¼ ðId � DÞ�t=2ðfFÞ where f is a CN compactly supported function
satisfying fðx0Þ ¼ 1: In the case of the function

Fo :¼ jx � x0jH sin
1

jx � x0jb

 !
þ Oðjx � x0jH

0
Þ;

where H 04H; for t small enough, htðx0Þ ¼ H þ ð1þ bÞt: The increase of the
pointwise Hölder regularity at x0 after a fractional integration of very small order t is
ð1þ bÞt: This remark motivated the following definition of Arneodo et al. [3].

Definition 5. Let F : Rm-R be a bounded function. The oscillating singularity
exponents of F at a point x0 are defined by

ðH; boÞ ¼ hF ðx0Þ;
@

@t
htðx0Þ

����
t¼0

�1
� 	

: ð37Þ

These exponents belong to ½0;þN� � ½0;þN�:

In [19], Melot obtained an optimal upper bound for dðH; boÞ for functions in
Besov spaces.
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