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Abstract

The multifractal formalism for chirps is a formula conjectured by Jaffard. It describes the
statistics of both the Holder exponents H and the (chirp) oscillation exponents f
characterizing the singular behavior involved in a given singular function. In that formula,
the ““chirp-type” Holder spectrum d(H, f§) is related to oscillation spaces @;*‘Y’([R{’"). For either
520 or s< —m/p, these spaces are a variation on the definition of Besov (or Sobolev) spaces.
On the contrary the spaces 0;“Y’([R€’") for —m/p<s<0 cannot be sharply imbedded between
Sobolev spaces, and thus are new spaces of really different nature. We prove that the
multifractal formalism for chirps yields for any function an upper bound. Besides, this upper
bound is optimal.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let us recall the definitions of Holder regularity and Hoélder spectrum. Let F :
R™+ R be a function.

Definition 1.

® FeCh(xp) for >0 if there exist a polynomial P of degree smaller than / and a
constant C such that, in a neighborhood of xg

|F(x) — P(x — x0)| < C|x — xo|". (1)
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® The Holder exponent hp(xg) of F at xg is the supremum of all values of /4 such
that Fe C"(xo).

® The Holder spectrum of F is the function d(H) which associates to each positive
H the Hausdorff dimension of the set E(¥) of points x where hp(x) = H (by
convention dim(Q) = —o0).

® FeC(R™) for h>0if (1) holds for any x and xq in R” with a uniform constant C.

® The global Holder regularity of F is the supremum of all values of /4 such that
FeCHR™).

The (standard) multifractal formalism was introduced by Frisch and Parisi [10] in
the context of fully developed turbulence. It proposes to compute the Holder
spectrum of a function F using the formula

d(H) = inf(pH —n(p) +m), (2)

where 5(p) is defined by [, |F(x + 1) — F(x)[” dx~|I|"?) when /0. Note that the
study of this Legendre transform was already advocated in the seminal paper of
Mandelbrot [18]. An alternative formula based on the local maxima of the wavelet
transform was proposed by Arneodo, Bacry, and Muzy (see [1]). Jaffard [12], proved
that formula (2) and the wavelet-based formula yield the same exponent #(p) which
can be deduced from the functional Besov-type spaces to which the function F
belongs, i.c.,

1(p) = supfs: FeBJP= (R")). G)

The definition of a Besov space will be recalled in (9).

The validity of (2) has been proved for a large class of selfsimilar functions (see
[2,4-9,12]). Jaffard [14], proved that (2) holds for quasi-all functions, i.e., outside a
set of the first class of Baire.

In [16], a counter-example shows that the (standard) multifractal formalism fails in
the case where the function displays very oscillating behaviors. The Holder exponent
is not precise enough, in the sense that it does not take into account the local
oscillations of the function. Indeed a given Holder exponent H at x allows for
different behaviors near xo: for instance cusp-like singularities, such as |x — x| or
very oscillatory behaviors, such as

1
Frp(x) =[x — X0|H5in< |/}> (4)
X — Xp

for f>0. The functions Fy g are the most simple examples of chirps at xp. In signal
analysis, this notion is expected to give a model for functions whose ““instantancous
frequency’ increases fast at some time (see [17]).

A careful study of the (standard) multifractal formalism shows that this formalism
is only adapted to ‘“‘cusp-type” singularities (i.e., singularities with oscillation
exponent f = 0). Contrary to functions with cusp singularities, the primitive of the
oscillating function (4) has an Hélder exponent H + 1 + f at xo which is different
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from H + 1 (the gain of regularity is not 1 as might be expected but f# + 1). This
remark motivated the following definition introduced by Meyer [17].

Definition 2. Let 2>0 and $>0. A function F in L* (R™) is a (h, §)-type chirp at xq
if Vne N, F can be written as a finite sum of partial derivatives of order n of functions
which belong to C* (145 (x).

The interior of the set of points (%, §) such that a function F is a (4, f§)-type chirp
at xo is always a domain of the form s </p(xo), f<f(xo) (see [16]). The non-negative
real number f(xg) is called the chirp exponent at x, i.e.,

B(xo) = sup{p; Ih<hr(xo) such that F is a (&, f)-type chirp at x,}. (5)

If we want to study chirps located in a signal, we are naturally led to define a
spectrum of ““chirp-type” Holder singularities as follows.

Definition 3. The spectrum d(H, f8) of chirp-type Holder singularities of a function F
is the Hausdorff dimension of the set E(7#) of points where F has chirp exponents

(H, p).

Jaffard conjectured by thermodynamic arguments a new multifractal formalism
adapted to chirps. He proposed the use of oscillation spaces @;’S/([R'”) (see Definition
4) in order to capture the oscillating behaviors which are left undetected by Sobolev

or Besov spaces.
Let

{(p,s) = sup{s; Fe 07" /P (R™)}. (6)
The formula of Jaffard asserts that

d(H,B) = inf(Hp = (1+ )5 = (p.5)) 9

It is called the multifractal formalism for chirps (or for chirp-type Holder
singularities). Jaffard checked its validity for lacunary wavelet series (for which
the standard multifractal formalism was wrong). Arneodo et al. [3] constructed a
family of wavelet series for which (7) holds.

In the next section, we recall both the wavelet characterization of Besov spaces,
oscillation spaces and chirps. We also give the heuristic argument from which
formula (7) was derived.

In the third section, we recall the embeddings between oscillation and Besov
spaces.

In the fourth section, we will demonstrate the upper bound for the new formalism.
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2. The heuristic derivation of the multifractal formalism for chirps

Suppose that the function F : R” - R is known by the explicit knowledge of its
coefficients in a given basis (see [20]). Let W"), i=1,...,2" -1, be a family of
2" — 1 smooth wavelets such that the 27/2y(2x—k), i=1,..2"—
1, jeZ, keZ™, form an orthonormal basis of L*(R™). We will use a L*
normalization for wavelets, so that we write

F(x)=Y" Cp(2x — k), (8)

ijk

where C](',z =27 [ew F(x)YY(2x — k) dx. We will from now on use the following
simpler notations; A and A’ will denote, respectively, the cubes ljk = k27 +[0,2]"
and Ay = k'27 +10,277]", C; will denote the coefficient Cl(llz, and y, will denote
the wavelet lp([)(2fx — k) (note that we “forget” to write the index i of the wavelet,
which is of no consequence). Recall that F belongs to the Besov space qu(R"’) with

p>0and ¢>0 if (see [20])
1/p
2% =mj/p (Z |CA|I)> =¢ with gel 9)
k

The spaces @;'3/(@{’”) are function spaces that have been introduced by Jaffard [13] in

order to quantify with one parameter (or a few) the degree of correlations between
positions of large wavelet coefficients.

Definition 4. Let p>0, and s,5 e R.
A function F belongs to the oscillation space O”?;’S’(R’”) if its wavelet coefficients
satisfy

1/p
3IC>0 Vj=0 2@’(2 sup |cﬂ25’-/"1’> <C. (10)

kA<l

Note that, if p = oo, this condition becomes

3IC>0 Vj=0 2Ysup |C2|<C.
JI=zj
The left-hand side defines the @}‘;“"(Rm) semi-norm.

Jaffard and Meyer [17, Theorem 4.2], characterized chirps in terms of estimates on
the size of the wavelet coefficients.
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Proposition 1. F is a (h, §)-type chirp at xo with global Holder regularity r>0 if and
only if for any N>=0

® if|k27 — xo| <27 then |C;| < Cy2™N
o if (k277 — x| P <27 <2 — x| then | €< Cylk2 T — xo" (B3

o if 2 —xo| 27 dhen |Gl < Clk2 — xo (s 2
/—=Xo

It follows that if F is a (h, f)-type chirp at xo, its wavelet coefficients are of the

144

order of magnitude of |[k27 — xo|" near the curve |k27 — xo|'™ ~2 and decay fast

away from this curve.

Let us recall the heuristic argument from which formula (7) was derived. Though
this argument cannot be transformed into a correct mathematical proof, it shows at
least why that formula can be expected to hold. We estimate for each (H,f5) the
contribution of the chirps of exponents (H, f§) to the quantity

2 sup ;27 (1)
k L

Consider a cube 4 of size 27 which contains a chirp of exponents (H, §) at xo. Then
the coefficients |C;| are of the order of magnitude of |k'27 — xo|” near the curve
[k'27" — xo|'"" ~ 27" and decay fast away from this curve. Let 2’ = 4. Since x( € 4 then
k27 — xo| <27, 50 [K'27 — xo|"F < 277048 1t follows that the wavelet coefficients
C, for /' < J are negligible as long as 27/ >27(4F) je. aslongas; <j(1+ f). When
Jj' ~j(1 4 p), for some values of k',

1Cy|~ K27 — x|/ and  [K27 — xo|'TP ~27
So

;i .

|Cy|~27 TP~ 271,

So that

o Hp
sup |Cy P27 ~27 Tp) < o ~i(Hp=(14P))
Y
(as long as s’ <pH/(1 + f), else the supremum is infinite). The contribution of the
chirps of exponents (H, f5) to quantity (11) is thus

2fd(H )9 ~i(Hp=(1+)5) _ 9~i(Hp=(1+)3 ~d(H )

where d(H,ff) was given in Definition 3. When j+— oo, the main contribution is
obtained by the couple (H,f}) realizing the infimum of Hp — (1 + f)s' — d(H, p);
hence the heuristic formula

C@,S’)Zgg (Hp — (14 B)s' — d(H, B)). (12)
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This formula is not the one we are looking for since we know {(p, s") and we look for
d(H, p); but if (12) holds and d(H, ) is convex, d(H, f3) is recovered by an inverse
Legendre transform formula which yields (7).

3. Embeddings between oscillation and Besov spaces

Jaffard [13,15] proved that the spaces @;"Y/([RR’”) for either s>0 or s< —m/p are a
variation on the definition of Besov (or Sobolev) spaces. On the contrary the spaces
@‘;’S’(Rm) for —m/p<s<0 cannot be sharply imbedded between Sobolev spaces, and
thus are new spaces of really different nature. Using the convention C*(R™) =
B,*(R™) even when s is an integer, i.e., FeC*(R™) if and only if its wavelet
coefficients satisfy the condition

|G| <27, (13)

Jaffard proved the following results.

Proposition 2.

Ve=0, V&>=0, O3 (R™) <O (R, (14)
Ve>0, 05 T(RM) G 08 (R™). (15)

1. 1fS>0, then @;,S’(Rm) _ B;—%s’-ﬁ—nz/P,OO(Rm).
2. B;+’"/P~P(Rm) N (gg.s’ (Rm) N B[iﬂ"/]h”v‘ (Rm)'
3. If —-m/p<s<0, then
s'+m/p, m 5,8 (m s’ (m
BYIre (R, 037 (R™) < C (R™)
and
+5'+ s +5'+m/p,
foas m/p(Rn1)<_)0;s (Rm)f_)Bxlx) s'+m/p CC(IRWI)

4. If s< — m/p then O3 (R™) = C*(R™).

Furthermore, in Cases 2 and 3, the embeddings are optimal.

Such embeddings were given for a definition of the oscillation spaces which differs
slightly from the one we choose here. So we prefer here to rewrite the proof of these
embeddings. However, we refer to [15] for the proof of the optimality of the
embeddings.
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The first point of Proposition 2 is straightforward. The second point follows from
the fact that if />, then for any positive ¢, 20" %>1 so that

i 2 Z sup |Cy 7257 < 205= Eﬂ’z sup |C P20 +ep
Vs =}

Now, we prove the embeddings of oscillation spaces into Besov spaces. Since
|C1|2 <supy ;| Cy |2 then |C;|<supy,;|Cy[20 7). It follows that

1/p 1/p
vj 2 (s+s'+m/p)in—mj/p (Z |C;~ |P> <2sj (Z sup |C2/ |P2/‘/S/P> ,
k Nl

k

so that Vs, s, p, @;’S/(Rm)L»B;+‘Y/+m/p’oo([R{'"). Furthermore, if (10) holds, applying
this bound for j = 0 yields sup, |C;27|< C, so that

Vs, s, p, O (R™) < CY(R™). (16)

In order to prove the converse embeddings, we remark that we can bound
supy.; (|Cy[2/%) either by
Z > (G 2y (17)
2] N<a
or by
supsup (|Cy[2")" (18)
iz

(where sup; is taken on all dyadic cubes of size 277).
If we use (17) as upper bound, we obtain

273" sup [P <2V Z > Z | P2,
K A<

J=j Aei

The latest term is equal to

257/ Z Z |Cy P57, (19)
syl

® Ifs=0, then (19) is equal to 7, > |Cx|"2*?. Applying this bound for j = 0
yields

m/p, 11 0,s" ¢ mom
BIP (R™) < 007 (R™). (20)

e If F belongs to By /7% (R™), 26+ S, |Cy[P < C so that, if s>0, (19) is
bounded. Thus if s>0, B, """ (R") & 03 (R™).
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® [f s<0, using (20) and (14), it follows that
/+m/p, i 0,5" ( o 5,8
By (R™) & 007 (R™) < 057 (R™).

Now if we bound sup, _; (|Cy|2/*) by (18), since (18) does not depend on k,
27NN |Ca PP <22 sup sup |Cy P27, (21)
k ’

i =i

® If s< —m/p and F belongs to C*(R™), sup, |C,["2/$? < C so that the right-hand
side of (21) is bounded by C2"2%/ < C and C*(R™) L»(O;“Y/([R{m).

® If s> —m/p and Fe CH+M/P(R™), |C,| < C2- 6+ +m/P) 5o that the right-hand
side of (21) is bounded by C and C**+"/P(R™) @@‘;*5/([R§’”).

4. The proof of the upper bound for the multifractal formalism for chirps

Jaffard and Meyer [17, Theorem 4.2], characterized chirps using two-microlocal
spaces; Recall (see [11]) that a distribution F belongs to the two-microlocal space
C;}f/ if there exists C>0 such that the wavelet coefficients of F satisfy, for |xg — k27
close enough to 0,

1C| < C27H (27 4 |xg — k277)) 7, (22)
i.e.,

|G| <C27 (1 + [Pxo — k)" (23)

Proposition 3. F is a (h, §)-type chirp at xo with global Holder regularity r>0 if and
only if F belongs to all the two-microlocal spaces C;’O’/ Jor t+1<r and (B+ 1)t +
pt' <h.

Jaffard and Meyer also characterized two-microlocal spaces in terms of local
Holder type conditions (see [17, Theorem 1.2]). Let B, be the ball |[x — xo|<p and I',
the annulus p<|x — x¢| <3p. Let 4 be a set and seR. By definition, a function f
belongs to C*(A4) if it is the restriction to 4 of a function F in C*(R™). The norm of f
is then the infimum of all possible norms of F in C*(R™).

Proposition 4. If ¢ is negative, a distribution f defined in a neighborhood of x belongs
to C’Q(f' if and only if there exists C>0 such that

WHCH"(B,,) <Cp". (24)
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If ¢ is positive, f belongs to C;O” if and only if there exists C>0 such that
il s,y <Co™ (25)

and
feC(R™). (26)

In view of (16), in order to prove the upper bound in the multifractal formalism
for chirps, it suffices to show the following result.

Theorem 1. [f F e @;’S, (R™) with s’ smaller than the global Holder regularity r of F then
d(H,B)<p(H — (1+ B)s' —s).

Proof. Since Fe @;’S’(Rm) then there exists C>0 such that

1/p
Vi, 29 (Z sup |ci/2s’f’|f’> <C. (27)

A=Y
Let d be such that 0 <d <m and Bj‘fk be the ball centered on k2~ and of size

diam( B;I_k) _ jfz/dzsy'p/d sup |Cﬂ25’jf|l)/d.

YRy
Then (27) can be rewritten as

. . c
vj, ; (dlam(B]‘-{k))dsj—z. (28)

Let A7 =J, BY;. Relation (28) implies that the d-Hausdorff measure of A4¢:=

lim sup A4¢ is 0.

Proposition 5. If xo¢ A¢ then F belongs to all the two-microlocal spaces C)’C’O’I for
t+17<s and t<s+5 +d/p.
Proof. Let xo¢ A, then there exists jo such that ¥j >y, Vk, xo¢ BY, so that

Vizjo, kYA i |Cpl <27 27 |xg — k27| (29)
If furthermore |xg — k277|< C27/, then

VA <l |Cy| < €2 k) 2/p (30)
Hence, if |xg — k27|< C27, then

VA <l |Cy| < C27 T2t s 0, (31)
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Let now 0<p<1/8, there exists a unique jeN* such that {27 <p<327 so that
B, [|x — xo|<427] and I'y = [£ 277 < |x — xo|<327]. There exist at most two cubes
of the form 4 that cover B, and I',. Thus, if there exists C>0 such that for any j
large enough and for any k such that |xo — k27| < C27, the condition

[fll ey <CQ27) (32)
holds, then relations (24) and (25) hold too. Remark that (32) is equivalent to
VA i |Cyl< €27 I (33)

Remark also that 292/ <2/42/8 for all j large enough and j/>; if and only if a< 4
and a + b< A4 + B. It follows from (31) that relations (24) and (25) hold for any ¢ and
¢ satisfying ¢t + ¢ <s' and t<s+ 5 + d/p. To achieve the proof of Proposition 5, we
should verify (26) when ¢ is positive. From the convexity of the two-microlocal
domain of F at xo, i.e., {(¢,7); FeC;’;/}, and the embeddings

V36>0, CLl Lo (34)
and
V>0, Ci=Cy™ (35)

it follows that F belongs to all the two-microlocal spaces C;:(f/ for 14 ¢ <s' and
t<s+s +d/p if and only if F belongs to all the two-microlocal spaces
Ci‘-jsurd/p*s’*s*d/pﬁ for any ¢ close enough to 0. So, if # == —s — d/p + ¢ is positive
thent:=s+5 +d/p—e=5 —1'<s. So in view of (16), we obtain Fe C'(R").
Let us now achieve the proof of Theorem 1. Let ¢ >0, we will show that if xq ¢ A9
and
d=p(H -~ (1+p)5 —) (36)

then xo¢ EX—¥F) Let ¢>0 and (T,7T")= (s+s +d/p—¢/2,—s—d/p). Since
T<s+s +d/pand T+ T'<s then FeCl'". Remark now thdt since 5/ <r then
T + T’ <r. Nevertheless, (36) implies that (8 + DT + T = H — (f + 1)¢/2 which is
larger than H — ¢ for e<2¢'/(f + 1). Hence xo ¢ EW =4, As a consequence, we have

Ve >0, EWPH <y,
Thus
Ve'>0, d(H—¢,B)<p(H — (1+p)s' —5s).
Therefore
Ve'>0, d(H,p)<p((H+¢)—(1+p)s' —s).
This yields Theorem 1.
The upper bound in (7) is optimal since it becomes an equality in the case of

lacunary wavelet series (see [13]). Besides Arneodo et al. [3] constructed an other
family of wavelet series for which (7) holds.
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Remark. There is a slightly different definition of oscillation exponent f which
agrees with the definition of the chirp oscillation exponent for functions such as (4),
and which is stable under the addition of a ‘smooth noise’. Let /,(xo) denote the
Holder exponent of the fractional primitive of order ¢ at xy of a function F. More
precisely, if F is locally bounded, we denote by /,(xy) the Holder exponent of the
function F, = (Id — A)ft/2(¢F) where ¢ is a C® compactly supported function
satisfying ¢(xo) = 1. In the case of the function

. 1 '
F, = |x — xo|" sin (ﬁ) + O(|x — xo| ™),
— X0

|x

where H'>H, for ¢ small enough, h,(xo) = H + (1 + f8)z. The increase of the
pointwise Holder regularity at x( after a fractional integration of very small order ¢ is
(I 4+ p)t. This remark motivated the following definition of Arneodo et al. [3].

Definition 5. Let F: R"—>R be a bounded function. The oscillating singularity
exponents of F at a point x, are defined by

(H.,) = (hﬂxo)ght(xo) 0—1). 37)

These exponents belong to [0, +o0] X [0, +0].

In [19], Melot obtained an optimal upper bound for d(H,f5,) for functions in
Besov spaces.
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